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Abstract 

For the past 3-4 years work has been undergoing on the development of a new computer 
programme (JMatPro) for calculating general material properties of multi-component alloys.  
These properties are wide ranging, including stable and metastable phase equilibria, thermo-
physical and physical properties (from room temperature into the liquid state), TTT/CCT 
diagrams, martensite temperatures, proof and tensile stress, hardness, stress/strain diagrams, 
etc.  A feature of the new programme is that the models are based on sound physical 
principles rather than purely statistical methods.  Thus many of the shortcomings of methods 
such as regression analysis can be overcome.  For example, sensitivity to microstructure can 
be included.  Prediction of physical properties relevant to solidification can now also be made, 
which is of vital importance for process simulation but extremely difficult to measure or 
otherwise estimate.  This paper provides a background to the scientific models used by 
JMatPro and numerous examples of calculated results for various properties in Ti-based 
alloys will be presented, with the emphasis being placed on validation of calculated results 
against experimental observation in multi-component commercial alloys.   

1 Introduction 

Thermodynamic modelling tools for exploring equilibrium phase relationships in complex 
materials are being increasingly used in industrial practice [1].  Such calculations benefit the 
end user, whether they work in industry or academia, but the applicability of phase 
equilibrium calculations often falls short from directly providing the information that is 
actually required.  For example, thermodynamic modelling helps towards the understanding 
of changes in phase constitution of a material as a function of composition or temperature.  
However, a considerable jump is then needed to convert this information into the properties 
being targeted by the end user, e.g. TTT/CCT diagrams, mechanical properties, thermo-
physical or physical properties.  

To overcome these limitations a new computer programme has been developed, called 
JMatPro, an acronym for Java-based Materials Properties software.  The approach adopted in 
the development of the new programme has been to augment the thermodynamic calculation 
by incorporating various theoretical models and additional property databases that will allow 
a quantitative calculation for the requisite materials property within a larger software 
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structure.  This then enables a clear path to be created between the thermodynamic calculation 
and the final product that is required, i.e. the materials property itself.   

The purpose of the present paper is to demonstrate how the translation from 
thermodynamic calculations to general materials properties has been achieved and to present 
examples of applications to multi-component commercial alloys, with particular emphasis on 
the validation of the calculated property against experimental values. 

2 Results and Discussion 

2.1 Thermodynamic calculations 

The current software utilises core minimisation routines developed for the PMLFKT software 
programme by Lukas et al.2 and recently extended by Kattner et al [3]. to multi-component 
alloys.  These sub-routines have been converted from Fortran to C and, in addition, a 
comprehensive set of new sub-routines written in C/C++.  These new subroutines (i) provide 
automatic start points, (ii) original algorithms to ensure that highly reliable results for multi-
component, multi-phase equilibria can be routinely calculated, (iii) algorithms for stability 
checking that also continually monitor the composition of the various phases that may have 
miscibility gaps or the potential for ordering and (iv) highly robust routines for finding phase 
boundaries. Thermodynamic calculations have been applied directly to commercial 
Ti-alloys [4] and Fig. 1 shows a comparison between experimentally observed and calculated 
β-transus temperatures for a wide variety of multi-component Ti-alloys, while Fig. 2 shows 
the comparison between experimentally observed vol% α and calculated mole % α for 
Ti-6Al-4V alloys as a function of temperature. 

Figure 1. Comparison between experimentally
observed and calculated β-transus temperatures for
various multi-component Ti-alloys. (see Saunders [4]
for references to experiment values). 

Figure 2. Comparison between experimentally 
observed vol% α and calculated mole % α for 
Ti-6Al-4V alloys. (see Saunders [4] for references to 
experiment values). 
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2.2 TTT/CCT calculations 

The evolution of volume fraction during solid-state transformation can be described using the 
well known Johnson-Mehl-Avrami (JMA) equation, which, for spherical particles and 
isothermal conditions, can be expressed as [5]: 
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where T is the temperature, V is the volume fraction transformed at time t, Veq is the 
equilibrium amount of precipitate, Nr is the nucleation rate and Gr is the growth rate.  A more 
general equation is usually used in practice, taking the form 

 )kexp(1 ntx −−=  (2) 

where k is a constant and usually empirically evaluated for each temperature.  n is often 
called the Avrami exponent which usually has to be evaluated empirically and takes values 
between 1-4. The various values of n are usually linked to factors such as the shape of the 
precipitate, whether the nucleation or growth rate is constant, or varying with time, or whether 
nucleant site saturation has been achieved. 

Recently an approach has been developed [6] with the aim of including a more explicit 
representation of nucleation and growth rates as shown in eq.1 while maintaining the 
flexibility of approach more inherent in the generalised form shown in eq.2.  This has been 
achieved by incorporation of the effect of shape in the basic equations after Martin et al. [7].  
Excellent results have been obtained for various alloy types using this approach [8].  A 
significant factor in its success has been the capacity to use explicit values for transformation 
temperatures, equilibrium amounts and compositions for the precipitating phase, and allied 
thermodynamic factors such as driving forces obtained from thermodynamic calculation. 

A further advantage of the current modelling method is that it reduces the number of input 
parameters that otherwise need to be evaluated.  In consideration of nucleant density and 
precipitate shape, specific values are defined for the various types of precipitates, consistent 
with the dimensionality of the precipitate and potential nucleant site.  We have considered the 
case of Widmenstatten growth, where the morphology of α is considered as having dimen-
sional characteristics associated with a complex mixture of plates and needles rather than 
spheres.  Two types of α precipitate are considered, those at the prior β grain boundary (GB) 
and those in the prior β grain interior (bulk) that have an increased barrier to nucleation.  
Nucleant densities consistent with formation at GBs and dislocation sites [9] are utilised. 

Fig. 3 shows the subsequently calculated isothermal Time-Temperature-Transformation 
(TTT) diagram for Ti-1023 (α transformed=5%) compared with experimental observation 
[10,11].  It is possible to convert this diagram to a Continuous-Cooling-Transformation (CCT) 
diagram using well known additivity rules [12] and the subsequently calculated CCT diagram 
is shown in Fig. 4.  It is recognised that phase transformations in Ti-alloys can be complex 
and the approach used here considers a fairly simple scenario.  However, kinetics are 
dominated by the temperature of the β-transus because transformation rates increase rapidly at 
higher temperatures.  This is shown in Fig. 5 for (i) Ti-6242Si, (ii) SP700 and Ti-1023 whose 
respective β-transus temperatures are typically 1000°, 900° and 800°C. Note that as the 
β-transus temperature increases, the critical cooling rate is increasingly controlled by the 
formation of bulk α rather than GB α.  This is due to the preferential increase in kinetics of 
bulk α transformation in comparison to GB α as the temperature increases. 
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Figure 4. Calculated CCT diagram for Ti-1023
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Fig. 6 shows the agreement between 
calculated and experimentally 
observed 0.2% proof stress and UTS 
of a range of alloys comprising α, α/β 
and β types.  The experimental results 
are taken from various manufacturers 
data sheets [16,17,18,19] and where 
information concerning grain size can 
be straightforwardly extracted.  For the 
case of Ti-153 and Ti-62S, grain sizes 
after Niwa et al. [20] and Fanning [21] 
respectively, were used.  For the case 
of the β alloys, these are considered in 
the solution treated condition rather 
than the aged condition where omega 
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coefficients are required for physical properties rather than mechanical properties [8,15,22]. 
Firstly, the requisite properties for the α and β phases are calculated and then combined using 
a model accounting for the effect of microstructure on the final property [14].  Although such 
models have been implemented in JMatPro, they only have an important effect when the 
properties of the phases in the alloy differ significantly. 
Figure 9. Comparison between experimentally
observed [16,17,18,19] and calculated Young’s
moduli (GPa) for various Ti-alloys. 
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the case of pure Ti where thermal conductivity [27] and density measurements [28] have been 
made.  Fig. 12 shows the calculated density of liquid Ti in comparison to that measured by 
Saito et al. [28].  A strength of the current approach is that the models used are physically 
based and can be self-consistently applied for various alloy types where measurements have 
been made. It is therefore possible to demonstrate that the approach inherently provides 
excellent results for liquid alloys [29].  Using a Scheil-Gulliver model it possible to simulate 
non-equilibrium solidification for many types of multi-components alloys [29] and, using this 
model, the phases formed as a function of temperature were calculated.  From this calculation, 
the volume change during solidification of Ti-6Al-4V was calculated and is shown in Fig. 13.  

3 Summary and Conclusions 

It has been demonstrated that an integrated approach to the modelling of materials properties 
can provide a wide range of information regarding phase equilibria, TTT/CCT diagrams, 
mechanical properties and physical properties for Ti-alloys. The calculations utilise well-
established material models and consider the effect of microstructure.  The calculated results 
obtained for a wide range of commercial Titanium alloys have been extensively validated 
against experiment. 

The good agreement for known alloys gives confidence for calculations made for new 
combinations of alloying elements and heat-treatments, which would otherwise require time 
consuming and expensive experimentation. 
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Figure 13. Calculated volume shrinkage during
solidification of Ti-64. 
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